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This paper shows how regular convex 4-polytopes – the analogues of the

Platonic solids in four dimensions – can be constructed from three-dimensional

considerations concerning the Platonic solids alone. Via the Cartan–Dieudonné

theorem, the reflective symmetries of the Platonic solids generate rotations. In a

Clifford algebra framework, the space of spinors generating such three-

dimensional rotations has a natural four-dimensional Euclidean structure. The

spinors arising from the Platonic solids can thus in turn be interpreted as vertices

in four-dimensional space, giving a simple construction of the four-dimensional

polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these

polytopes have ‘mysterious’ symmetries, that are almost trivial when seen from

the three-dimensional spinorial point of view. In fact, all these induced

polytopes are also known to be root systems and thus generate rank-4 Coxeter

groups, which can be shown to be a general property of the spinor construction.

These considerations thus also apply to other root systems such as A1 � I2ðnÞ

which induces I2ðnÞ � I2ðnÞ, explaining the existence of the grand antiprism and

the snub 24-cell, as well as their symmetries. These results are discussed in the

wider mathematical context of Arnold’s trinities and the McKay correspon-

dence. These results are thus a novel link between the geometries of three and

four dimensions, with interesting potential applications on both sides of the

correspondence, to real three-dimensional systems with polyhedral symmetries

such as (quasi)crystals and viruses, as well as four-dimensional geometries

arising for instance in Grand Unified Theories and string and M-theory.

1. Introduction

The Platonic solids are the regular convex polytopes in three

dimensions; that is they consist of identical vertices and faces

that are themselves regular polygons. There are five such

solids, namely the cube (eight vertices, six faces) and the

octahedron (six vertices, eight faces), which are dual under the

exchange of face midpoints and vertices, the dual pair dode-

cahedron (20 vertices, 12 faces) and icosahedron (12 vertices,

20 faces), and the self-dual tetrahedron (four vertices, four

faces). These objects are familiar from everyday life and have

in fact been known to humankind for millennia, in particular

at least a thousand years prior to Plato to the neolithic people

in Scotland. However, the solids have also always inspired

‘cosmology’ and are named after Plato for their use in his

philosophy, in which four of the solids explain the elements

(the icosahedron as water, cube as earth, octahedron as air and

tetrahedron as fire) and the dodecahedron is the ordering

principle of the universe. Johannes Kepler also attempted to

explain the planetary orbits in terms of the Platonic solids, and

more recent attempts include the Moon model of the nucleus

(Hecht & Stevens, 2004) and the Poincaré dodecahedral space

model of the universe (Luminet et al., 2003). These more

recent fundamental attempts aside, the Platonic solids feature

prominently in the natural world wherever geometry and

symmetry are important, for instance in lattices and quasi-

crystals, molecules such as fullerenes and viruses. The

symmetries of the Platonic solids – the Coxeter (reflection)

groups A3, B3 and H3 for the tetrahedron, cube/octahedron

and icosahedron/dodecahedron, respectively – and related

Coxeter group symmetries also arise in theoretical physics,

for instance in the context of gravitational singularities

(Henneaux et al., 2008) or the study of topological defects such

as the Skyrme model of the nucleus (Manton & Sutcliffe,

2004).

The Platonic solids have counterparts in four dimensions.

Generalizations of the tetrahedron, cube and octahedron exist

in any dimension (the hypersimplex, hypercube and hyper-

octahedron), but dimension four is special in that it has three

exceptional cases of regular convex polytopes much like the

Platonic solids in three dimensions (dodecahedron and

icosahedron). These are the hypericosahedron or 600-cell and
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its dual the 120-cell with symmetries given by the exceptional

Coxeter group H4 (which is the largest non-crystallographic

Coxeter group and therefore has no higher-dimensional

counterpart), and the self-dual 24-cell related to the excep-

tional phenomena of triality of D4 and the Coxeter group F4.

The peculiarities also include mysterious symmetries of these

‘four-dimensional Platonic solids’ and the property that

several are root systems (only the octahedron is a root system

in three dimensions), including the hyperoctahedron (or 16-

cell) with its dual hypercube, the 8-cell. The 4-simplex is also

called the 5-cell, and is self-dual. A summary of regular convex

polytopes is displayed in Table 1.

We therefore adopt the language of Coxeter groups and

root systems as appropriate for the description of the reflec-

tion symmetry groups of the Platonic solids and their gener-

alizations. Clifford’s geometric algebra has an elegant way of

handling orthogonal transformations, in particular a very

simple description of reflections and rotations. However, an

application to the root system framework appears only to have

been performed in Dechant (2013a,b). Polytopes in different

dimensions are not commonly thought to be related. However,

our Clifford/Coxeter approach makes a novel link by showing

that the Platonic solids in fact induce their four-dimensional

counterparts and their symmetries via a Clifford spinor

construction, which explains all the above exceptional, acci-

dental peculiarities of four dimensions.

Coxeter groups in dimension four actually feature promi-

nently in high-energy physics and the spinorial nature of our

construction could thus have interesting consequences. For

instance, D4 is related to the SOð8Þ symmetry of the transverse

dimensions in string theory, and the accidental triality prop-

erty is crucial for showing the equivalence of the Ramond–

Neveu–Schwarz and the Green–Schwarz strings. Similarly B4

corresponds to SOð9Þ as the little group in M-theory, and A4 is

related to SUð5ÞGrand Unified Theories. All three groups are

in turn contained in the larger exceptional groups F4 and H4,

which could themselves become phenomenologically impor-

tant and their spinorial nature could have interesting conse-

quences.

Whilst the literature contains partial, loosely connected

results on the existence of quaternionic descriptions of these

root systems and their automorphism groups (see, e.g.,

Humphreys, 1990, and a series of papers by Koca et al., 2006),

we do not think it is a very useful approach and giving a

summary would necessarily be very long and fragmented

(some more details are contained in Dechant, 2013b).

We believe that we are the first to give a straightfor-

ward and uniform proof of their existence and

structure. Furthermore, our Clifford spinor approach

has the additional benefit of a geometric under-

standing over a purely algebraic approach, and it

is clear what results mean geometrically at any

conceptual stage. This approach thus reveals novel

links between the Platonic solids and their four-

dimensional counterparts.

Our link between the Platonic solids, and more

generally the spinorial nature of various four-

dimensional phenomena, could therefore result in a plethora

of unknown connections due to a novel spinorial view of

symmetries, for instance in the context of Arnold’s trinities

(Arnold, 2000) and the McKay correspondence (McKay,

1980).

The article begins with a review of some necessary back-

ground in the Coxeter group and root system framework and

in Clifford algebra in x2. x3 shows how the three-dimensional

Platonic solids induce their four-dimensional analogues and

discusses the encountered structures in the context of trinities.

x4 explains the general nature of the Clifford spinor

construction and analyses related four-dimensional polytopes,

root systems and symmetry groups. x5 contains a summary of

all the rank-4 Coxeter groups in the context of the spinor

construction. This general aspect of the construction is remi-

niscent of the McKay correspondence, which we discuss in x6

together with the trinities, before we conclude in x7.

2. Mathematical background

In this section, we introduce some simple background in the

areas of Coxeter groups, root systems and Clifford algebras,

which will be all we need to prove the results in this article.

2.1. Coxeter groups

Definition 2.1 (Coxeter group). A Coxeter group is a group

generated by some involutive generators si; sj 2 S subject to

relations of the form ðsisjÞ
mij ¼ 1 with mij ¼ mji � 2 for i 6¼ j.

The finite Coxeter groups have a geometric representation

where the involutions are realized as reflections at hyper-

planes through the origin in a Euclidean vector space E and

are thus essentially just the classical reflection groups. In

particular, let ð�; �Þ denote the inner product in E, and �; � 2 E.

Definition 2.2 (reflections and roots). The generator s�
corresponds to the reflection

s� : �! s�ð�Þ ¼ �� 2
ð�; �Þ

ð�; �Þ
� ð1Þ

in a hyperplane perpendicular to the root vector �.

The action of the Coxeter group is to permute these root

vectors and its structure is thus encoded in the collection

� 2 E of all such roots, which form a root system.
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Table 1
The regular convex polytopes in three (Platonic solids), four and higher dimensions
[for a discussion of ‘Platonic solids’ in arbitrary dimensions see, for instance,
Szajewska (2012)].

Three-dimensional Tetrahedron Octahedron Icosahedron
Dual Self-dual Cube Dodecahedron

Four-dimensional 5-cell 24-cell 16-cell 600-cell
Dual Self-dual Self-dual 8-cell 120-cell

nD n-simplex n-hyperoctahedron
Dual Self-dual n-hypercube



Definition 2.3 (root system). Root systems are defined by the

two axioms: (i) � only contains a root � and its negative, but

no other scalar multiples: � \ R� ¼ f��; �g 8� 2 �; (ii) � is

invariant under all reflections corresponding to vectors in

� : s�� ¼ �8 � 2 �.

A subset � of �, called the simple roots, is sufficient to

express every element of � via a Z-linear combination with

coefficients of the same sign. � is therefore completely char-

acterized by this basis of simple roots, which in turn comple-

tely characterizes the Coxeter group.

Here we are primarily interested in the Coxeter groups of

ranks 3 and 4. For the crystallographic root systems, the

classification in terms of Dynkin diagrams essentially follows

the one familiar from Lie groups and Lie algebras, as their

Weyl groups are precisely the crystallographic Coxeter groups.

A mild generalization to so-called Coxeter–Dynkin diagrams

is necessary for the non-crystallographic groups: nodes still

correspond to simple roots, orthogonal roots are not

connected, roots at �=3 have a simple link and other angles

�=m have a link with a label m. For instance, the icosahedral

group H3 has one link labelled by 5, as does its four-dimen-

sional analogue H4, and the infinite two-dimensional family

I2ðnÞ (the symmetry groups of the regular n-gons) is labelled

by n. Table 2 displays the groups and their diagrams that are

relevant to our discussion. Table 3 contains a summary of the

Platonic solids and their symmetry groups, as well as the root

systems of those symmetry groups and a choice for the simple

roots. Root systems and their Coxeter groups are classified in

the same way [sometimes the ‘Weyl groups’ are also denoted

Wð�Þ], so that we will move quite freely between them in

places.

2.2. Geometric algebra

The study of Clifford algebras and geometric algebra

originated with Grassmann’s (1844), Hamilton’s (1844) and

Clifford’s (1878) geometric work. However, the geometric

content of the algebras was soon lost when interesting alge-

braic properties were discovered in mathematics, and Gibbs

advocated the use of the hybrid system of vector calculus in

physics. When Clifford algebras resurfaced in physics in the

context of quantum mechanics, it was purely for their alge-

braic properties, and this continues in particle physics to this

day. Thus, it is widely thought that Clifford algebras are

somehow intrinsically quantum mechanical in nature. The

original geometric meaning of Clifford algebras has been

revived in the work of David Hestenes (Hestenes, 1966;

Hestenes & Sobczyk, 1984; Hestenes, 1999). Here, we follow

an exposition along the lines of Doran & Lasenby (2003).

In a manner reminiscent of complex numbers carrying

both real and imaginary parts in the same algebraic entity,

one can consider the geometric product of two vectors

defined as the sum of their scalar (inner/symmetric)

product and wedge (outer/exterior/antisymmetric)

product

ab :¼ a � bþ a ^ b: ð2Þ

The wedge product is the outer product introduced by

Grassmann as an antisymmetric product of two vectors,

which naturally defines a plane. Unlike the constituent

inner and outer products, the geometric product is

invertible, as a�1 is simply given by a�1 ¼ a=ða2Þ. This

leads to many algebraic simplifications over standard

vector-space techniques and also feeds through to the

differential structure of the theory, with Green’s function
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Table 2
Overview of the Coxeter groups discussed here and their Coxeter–Dynkin diagrams.

Correspondence between the rank-3 and rank-4 Coxeter groups as well as the affine Lie algebras (the affine root is in red). The spinors generated from the
reflections contained in the respective rank-3 Coxeter group via the geometric product are realizations of the binary polyhedral groups Q, 2T, 2O and 2I, which
themselves generate (mostly exceptional) rank-4 groups, and are related to (mostly the type-E) affine Lie algebras via the McKay correspondence.

Rank-3 group Diagram Binary Rank-4 group Diagram Lie algebra Diagram

A1 � A1 � A1 Q A1 �A1 � A1 � A1 Dþ4

A3 2T D4 Eþ6

B3 2O F4 Eþ7

H3 2I H4 Eþ8

Table 3
The reflective symmetries of the Platonic solids.

The columns show the Platonic solids, their reflection symmetry groups (Coxeter
groups), their root systems and a set of simple roots (the normalization has been
omitted for better legibility). Here, � is the golden ratio � ¼ 1

2 ð1þ 51=2Þ and � is the
other solution (its ‘Galois conjugate’) to the quadratic equation x2 ¼ xþ 1, namely
� ¼ 1

2 ð1� 51=2Þ.

Platonic solid
Coxeter
group Root system Simple roots �i

Tetrahedron A3
1 Octahedron ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ

A3 Cuboctahedron ð1; 1; 0Þ; ð0;�1; 1Þ; ð�1; 1; 0Þ

Octahedron B3 Cuboctahedron ð1;�1; 0Þ; ð0; 1;�1Þ; ð0; 0; 1Þ
Cube + Octahedron

Icosahedron H3 Icosidodecahedron ð0;�1; 0Þ; ð��; 1; �Þ; ð0; 0;�1Þ
Dodecahedron



methods that are not achievable with vector calculus methods.

This geometric product can be extended to the product of

more vectors via associativity and distributivity, resulting in

higher-grade objects called multivectors. There are a total of

2n elements in the algebra, since it truncates at grade-n

multivectors due to the scalar nature of the product of parallel

vectors and the antisymmetry of orthogonal vectors. Essen-

tially, a Clifford algebra is a deformation of the exterior

algebra by a quadratic form, and for a geometric algebra this is

the metric of space(time).

The geometric product provides a very compact and effi-

cient way of handling reflections in any number of dimensions,

and thus by the Cartan–Dieudonné theorem also rotations.

For a unit vector n, we consider the reflection of a vector a in

the hyperplane orthogonal to n. Thanks to the geometric

product, in Clifford algebra the two terms in equation (1)

combine into a single term and thus a ‘sandwiching prescrip-

tion’.

Theorem 2.4 (reflections). In geometric algebra, a vector a

transforms under a reflection in the (hyper-)plane defined by a

unit normal vector n as

a0 ¼ �nan: ð3Þ

This is a remarkably compact and simple prescription for

reflecting vectors in hyperplanes. More generally, higher-grade

multivectors of the form M ¼ ab . . . c (so-called versors)

transform similarly (‘covariantly’), as M ¼ ab . . . c!

�nannbn . . . ncn ¼ �nab . . . cn ¼ �nMn. Even more impor-

tantly, from the Cartan–Dieudonné theorem, rotations are the

product of successive reflections. For instance, compounding

the reflections in the hyperplanes defined by the unit vectors n

and m results in a rotation in the plane defined by n ^m.

Proposition 2.5 (rotations). In geometric algebra, a vector a

transforms under a rotation in the plane defined by n ^m via

successive reflection in hyperplanes determined by the unit

vectors n and m as

a00 ¼ mnanm ¼: Ra ~RR; ð4Þ

where we have defined R ¼ mn and the tilde denotes the

reversal of the order of the constituent vectors ~RR ¼ nm.

Theorem 2.6 (rotors and spinors). The object R ¼ mn

generating the rotation in equation (4) is called a rotor. It

satisfies ~RRR ¼ R ~RR ¼ 1. Rotors themselves transform single-

sidedly under further rotations, and thus form a multiplicative

group under the geometric product, called the rotor group.

Since R and�R encode the same rotation, the rotor group is a

double-cover of the special orthogonal group and is thus

essentially the spin group. Objects in geometric algebra that

transform single-sidedly are called spinors, so that rotors are

normalized spinors.

Higher multivectors transform in the above covariant,

double-sided way as MN! ðRM ~RRÞðRN ~RRÞ ¼ RM ~RRRN ~RR ¼
RðMNÞ ~RR.

The geometric algebra of three dimensions Cl(3) spanned

by three orthogonal (thus anticommuting) unit vectors e1; e2

and e3 contains three bivectors e1e2; e2e3 and e3e1 that square

to �1, as well as the highest-grade object e1e2e3 (trivector and

pseudoscalar), which also squares to �1:

f1g|{z}
1 scalar

fe1; e2; e3g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
3 vectors

fe1e2 ¼ Ie3; e2e3 ¼ Ie1; e3e1 ¼ Ie2g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3 bivectors

fI 	 e1e2e3g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1 trivector

: ð5Þ

Theorem 2.7 [quaternions and spinors of Cl(3)]. The unit

spinors f1;�Ie1;�Ie2;�Ie3g of Cl(3) are isomorphic to the

quaternion algebra H.

Most of the results we will derive in this manuscript are

therefore readily translated into the language of quaternions.

However, we will refrain from doing so at every step and

instead advocate the geometric approach in terms of spinors.

This offers a new coherent picture, from which the plethora of

loosely connected results without geometric insight from the

literature follows in a straightforward and uniform way.

2.3. Three-dimensional root systems induce four-dimensional
root systems

The following is a summary of Dechant (2012) which proves

that every root system in three dimensions induces a root

system in four dimensions in completely general terms, using

only the Coxeter and Clifford frameworks, but making no

reference to any specific root system. The remainder of this

article in turn considers the implications of this general

statement for the concrete list of root systems in three and

four dimensions, including novel links between Arnold’s

trinities and with the McKay correspondence, as well as

explaining for the first time the otherwise mysterious structure

of the automorphism groups of these root systems.

The argument in this section is that each root system in

three dimensions allows one to find an even discrete spinor

group from the Coxeter reflection root vectors via the

geometric product. Because of the spinors’ Oð4Þ structure, this

spinor group can be reinterpreted as a set of four-dimensional

vectors, for which one can then show the root system axioms

hold.

Proposition 2.8 [O(4) structure of spinors]. The space of

Cl(3) spinors can be endowed with an inner product and a

norm giving it a four-dimensional Euclidean signature. For two

spinors R1 and R2, this is given by ðR1;R2Þ ¼
1
2 ðR1

~RR2 þ R2
~RR1).

Proof. For a spinor R ¼ a0 þ a1Ie1 þ a2Ie2 þ a3Ie3, this

gives ðR;RÞ ¼ R ~RR ¼ a2
0 þ a2

1 þ a2
2 þ a2

3, as required. &

Corollary 2.9 (three-dimensional spinors and four-dimen-

sional vectors). A spinor in three dimensions induces a vector
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in four dimensions by mapping the spinor components into the

four-dimensional Euclidean space as just defined in Proposi-

tion 2.8. A discrete spinor group thus gives rise to a set of

vertex vectors that can be interpreted as a four-dimensional

polytope.

This is in fact already enough for most of our results about

the four-dimensional counterparts of the Platonic solids,

including their construction and symmetries. However, it is

interesting that one can in fact also show the stronger state-

ment that these polytopes have to be root systems and

therefore induce Coxeter groups of rank 4.

Lemma 2.10 (reflections in four dimensions). A reflection of

the vector in the four-dimensional space corresponding to the

spinor R2 under the norm in Proposition 2.8 in the vector

corresponding to R1 is given by R2 ! R02 ¼ �R1
~RR2R1=ðR1

~RR1Þ.

Proof. For spinors R1 and R2, the reflection formula

[equation (1)] gives R2 ! R02 ¼ R2 � 2ðR1;R2Þ=ðR1;R1ÞR1 ¼

R2 � ½ðR1
~RR2 þ R2

~RR1ÞR1
=ðR1
~RR1Þ ¼ �R1

~RR2R1=ðR1
~RR1Þ. &

In fact, we are mostly interested in unit spinors, for which

this simplifies to �R1
~RR2R1. It is easily verified in terms of

components that this is indeed the same as the usual reflection

of four-dimensional vectors.

Theorem 2.11 (induced root systems in four dimensions). A

three-dimensional root system gives rise to an even spinor

group which induces a root system in four dimensions.

Proof. Check the two axioms for root systems for � given

by the set of four-dimensional vectors induced by a spinor

group.

(i) By construction, � contains the negative of a root since if

R is in a spinor group G, then so is �R (cf. Theorem 2.6), but

no other scalar multiples.

(ii) � is invariant under all reflections given by Lemma 2.10

since R02 ¼ �R1
~RR2R1=ðR1

~RR1Þ 2 G if R1;R2 2 G by the closure

property of the group G (in particular ~RR is in G if R is). &

The spinorial nature of these induced root systems is thus

critical for the understanding of the closure property – in

particular, it is immediately obvious why j�j ¼ jGj – and we

shall see later that it is also crucial for the analysis of the

automorphism groups of these polytopes.

3. Platonic relationships

We now turn to concrete examples of three-dimensional root

systems and consider which four-dimensional polytopes they

induce.

3.1. The Platonic solids, reflection groups and root systems

We start with the symmetry groups of the Platonic solids A3

(tetrahedron), B3 (octahedron and cube) and H3 (icosahedron

and dodecahedron). The induced polytopes are the 24-cell,

which generates the Coxeter group D4 from A3, the root

system of F4 from B3, and the 600-cell (the root system of H4)

from H3. The group A1 � A1 � A1 is also a symmetry of the

tetrahedron, which is found to induce the 16-cell, which is the

root system of A1 � A1 � A1 � A1.

The three simple roots of the Coxeter groups are in fact

sufficient to generate the entire root systems. The root vectors

encoding reflections are then combined to give spinors, as by

Cartan–Dieudonné a rotation is an even number of reflections.

Theorem 3.1 (reflections/Coxeter groups and polyhedra/root

systems). Take the three simple roots for the Coxeter group

A1 � A1 � A1 (respectively, A3=B3=H3). Geometric algebra

reflections in the hyperplanes orthogonal to these vectors via

equation (3) generate further vectors pointing to the six

(respectively, 12/18/30) vertices of an octahedron (respec-

tively, cuboctahedron/cuboctahedron with an octahedron/

icosidodecahedron), giving the full root system of the group.

For instance, the simple roots for A1 � A1 � A1 are �1 ¼ e1,

�2 ¼ e2 and �3 ¼ e3 for orthonormal basis vectors ei. Reflec-

tions amongst those then also generate �e1;�e2 and �e3,

which altogether point to the vertices of an octahedron.

Theorem 3.2 (spinors from reflections). The six (respectively,

12/18/30) reflections in the Coxeter group A1 � A1 � A1

(respectively, A3=B3=H3) generate eight (respectively, 24/48/

120) different rotors via Proposition 2.5.

For the A1 � A1 � A1 example above, the spinors thus

generated are �1;�e1e2;�e2e3 and �e3e1.

Theorem 3.3 (four-dimensional polytopes). The set of eight

(respectively, 24/48/120) rotors when reinterpreted as a four-

dimensional polytope generate the 16-cell (24-cell/24-cell with

dual/600-cell).

For the rotors from A1 � A1 � A1 one gets the vertices of

the 16-cell [(�1; 0; 0; 0) and permutations] via the corre-

spondence in Corollary 2.9.

This is enough for the construction of the counterparts of

the Platonic solids in four dimensions. However, the stronger

statement on root systems implies also the following.

Theorem 3.4 (four-dimensional root systems). The Coxeter

group A1 � A1 � A1 (respectively, A3=B3=H3) generates the

root system for A1 � A1 � A1 � A1 (respectively, D4=F4=H4).

In fact, these groups of discrete spinors yield a novel

construction of the binary polyhedral groups.

Theorem 3.5 (spinor groups and binary polyhedral groups).

The discrete spinor group in Theorem 3.2 is isomorphic to the

quaternion group Q (respectively, binary tetrahedral group

2T/binary octahedral group 2O/binary icosahedral group 2I).

The calculations are straightforward once the Clifford

algebra framework with the geometric product is adopted, and

more details can be found in Dechant (2013a,b).

The Platonic solids thus in the above sense induce their

counterparts in four dimensions, the convex regular poly-

chora. There are six such polytopes, and the 16-cell, 24-cell

and 600-cell are directly induced as shown above and

displayed in Table 4. Using duality, the 8-cell is induced from

research papers

596 Pierre-Philippe Dechant � Four-dimensional polytopes Acta Cryst. (2013). A69, 592–602



the 16-cell and the 120-cell is the dual of the 600-cell (the 24-

cell is self-dual). The only remaining case is the 5-cell. This is

the 4-simplex belonging to the family of n-dimensional

simplices with symmetry group An. This is the only such four-

dimensional polytope that is not equal or dual to a root

system. In fact it can obviously not be a root system, nor in

particular be constructed via our approach, as it has an odd

number of vertices, 5. This is therefore (ironically) the only

exception to our connections among the Platonic solids and

their four-dimensional counterparts. The only regular poly-

topes in higher dimensions are the n-dimensional simplex

(An), cube (Bn) and crosspolytope (Bn). Thus, in particular the

existence of the exceptional four-dimensional phenomena of

24-cell (D4 and F4), 600-cell and 120-cell (H4) is explained by

the ‘accidentalness’ of the spinor construction. This is parti-

cularly interesting for triality (D4), F4 as the largest crystal-

lographic group in four dimensions and quasicrystals, since H4

is the largest non-crystallographic Coxeter group.

3.2. Arnold and mathematical trinities

The great mathematician Vladimir Arnold had an exceed-

ingly broad view of mathematics, and his metapattern-inspired

proofs and conjectures have started and/or shaped many

subject areas (Arnold, 2000). For instance, linear algebra is

essentially the theory of the root systems An. However, by

abstracting away towards a description in terms of root

systems, many results carry over to other root systems and

thereby to other geometries (e.g. Euclidean and symplectic for

BCn, Dn). This is an alternative to the conventional view of

seeing these as special cases of linear algebra with extra

structure.

The most recent and important such metapattern appears to

be his trinities (Arnold, 1999, 2000), born out of the obser-

vation that many areas of real mathematics can be complex-

ified and quaternionified resulting in theories with a

similar structure. The fundamental trinity is thus ðR;C;HÞ,
and other trinities include ðRPn;CPn;HPnÞ, the spheres

ðRP1 ¼ S1;CP1 ¼ S2;HP1 ¼ S4Þ, the Möbius/Hopf

bundles ðS1 ! S1; S4 ! S2; S7 ! S4Þ, ðE6;E7;E8Þ

and many more.

There are in fact trinities related to the above

Platonic considerations such as (tetrahedron, octa-

hedron, icosahedron), ðA3;B3;H3Þ, ð24; 48; 120Þ and

ðD4;F4;H4Þ, but they were very loosely connected to

each other in previous work. For instance, Arnold’s

connection between ðA3;B3;H3Þ and ðD4;F4;H4Þ is

very convoluted and involves numerous other trini-

ties at intermediate steps via a decomposition of the

projective plane into Weyl chambers and Springer

cones, and noticing that the number of Weyl cham-

bers in each segment [24 = 2(1 + 3 + 3 + 5), 48 =

2(1 + 5 + 7 + 11), 120 = 2(1 + 11 + 19 + 29)] mira-

culously matches the quasihomogeneous weights

[ð2; 4; 4; 6Þ; ð2; 6; 8; 12Þ; ð2; 12; 20; 30Þ] of the Coxeter

groups ðD4;F4;H4Þ (Arnold, 1999).

We therefore believe that the construction here is consid-

erably easier and more immediate than Arnold’s original

connection between several of the trinities, such as

ðA3;B3;H3Þ, ðD4;F4;H4Þ, (tetrahedron, octahedron, icosahe-

dron) and ð24; 48; 120Þ. In fact we are not aware that the

following are considered trinities and would suggest adding

them: the root systems of ðA3;B3;H3Þ (cuboctahedron,

cuboctahedron with octahedron, icosidodecahedron), the

number of roots in these root systems ð12; 18; 30Þ and the

binary polyhedral groups ð2T; 2O; 2IÞ.

Our framework also finds alternative interpretations of well

known trinities, such as ð24; 48; 120Þ as the number of three-

dimensional spinors or four-dimensional root vectors as

opposed to the Weyl number decomposition. We will revisit

these connections and interpretations in more detail later in

the context of the McKay correspondence, as one can wonder

if this picture in terms of trinities is in fact the most useful

description. For instance, the Clifford spinor construction

also worked for A1 � A1 � A1 giving the four-dimensional

‘Platonic solid’ 16-cell, and we shall see in the next section that

the construction also holds for the other three-dimensional

root systems, arguably making it more general than a trinity.

Going back to the beginning of this section, the spinorial

nature of the root systems ðD4;F4;H4Þ could also have inter-

esting consequences from the perspective of abstracting away

from linear algebra to An and generalizing to other root

systems and geometries.

4. The general picture: three-dimensional root systems,
spinor induction and symmetries

The Clifford spinor construction holds for any rank-3 root

system and not just those related to the Platonic solids as

considered above. In this section we therefore examine the

remaining cases. In fact, the root systems A3, B3 and H3 are the

only irreducible root systems in three dimensions. A1 is the

unique one-dimensional root system and, having already

considered A1 � A1 � A1, the only missing cases are the sum

of A1 with a two-dimensional irreducible root system. These
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Table 4
Spinors generated by the reflective symmetries of the Platonic solids.

The Coxeter reflections generate discrete spinor groups that are isomorphic to the
quaternion group Q (or the eight Lipschitz units, in terms of quaternions), the binary
tetrahedral group 2T (24 Hurwitz units), the binary octahedral group 2O (24 Hurwitz
units and their 24 duals) and the binary icosahedral group 2I (120 Icosians). These
generate certain rank-4 Coxeter groups. When re-interpreting three-dimensional spinors
as four-dimensional vectors, these point to the vertices of certain regular convex
4-polytopes.

Platonic solid
Three-dimensional
group Spinors

Four-dimensional
polytope

Four-dimensional
group

Tetrahedron A3
1 Q 16-cell A4

1

A3 2T 24-cell D4

Octahedron B3 2O F4-root system F4

Cube

Icosahedron H3 2I 600-cell H4

Dodecahedron 120-cell



are the root systems of the symmetry groups I2ðnÞ of the

regular n-gons, which are easily dealt with in a uniform way.

4.1. A doubling procedure

Without loss of generality, the simple roots for I2ðnÞ can be

taken as �1 ¼ e1 and �2 ¼ � cosð�=nÞe1 þ sinð�=nÞe2. We

have shown in Dechant (2012) that an analogue of the spinor

construction exists in two dimensions, but is of limited interest,

as the two-dimensional root systems are shown to be self-dual.

The space of spinors R ¼ a1 þ a2e1e2 ¼: a1 þ a2I in two-

dimensional Euclidean space (defining I :¼ e1e2) is also two-

dimensional and has a natural Euclidean structure given by

R ~RR ¼ a2
1 þ a2

2. A two-dimensional root vector �i ¼ a1e1 þ a2e2

is therefore in bijection with a spinor by �i ! �1�i ¼

e1�i ¼ a1 þ a2e1e2 ¼ a1 þ a2I (taking �1 ¼ e1 without loss of

generality). This is the same as forming a spinor between those

two root vectors. The infinite family of two-dimensional root

systems I2ðnÞ is therefore self-dual.

Taking �1 and �2 as generating I2ðnÞ and �3 ¼ e3 for A1, one

has a total of 2nþ 2 roots. One easily computes that these

generate a spinor group of order 4n which consists of two sets

of order 2n that are mutually orthogonal under the spinor

norm in Proposition 2.8. One therefore finds the following

theorem.

Theorem 4.1 [four-dimensional root systems from

A1 � I2ðnÞ]. Under the Clifford spinor construction the three-

dimensional root systems A1 � I2ðnÞ generate the root systems

I2ðnÞ � I2ðnÞ in four dimensions.

The case of A1 � A1 � A1 inducing A1 � A1 � A1 � A1 is

now seen to be a special case of this more general ‘doubling

construction’. In fact one can easily see that one of the I2ðnÞ

sets is e1e3-times that of the other. In terms of quaternions

(Theorem 2.7), this corresponds to an imaginary unit j or k and

is often the starting ansatz in the literature (Koca et al., 2009).

This is in fact the only way in four dimensions the root systems

can be orthogonal, but we just point out here that it arises

naturally from our induction construction.

To see why the order of the spinor group is 4n and the

construction yields two copies with the above properties, let us

consider the products of two root vectors. If both root vectors

in the product �i�j are from A1, one merely gets �1, which is

trivially in the spinor group. Without loss of generality one can

therefore say that either one or both root vectors are from

I2ðnÞ (there are 2n root vectors). If both are from I2ðnÞ, then

from the self-duality of I2ðnÞ one has that 2n such spinors

R ¼ �i�j arise. It is easy to see that none of these can contain

e3.

The other possibility is to have one root �i from I2ðnÞ and �3

from A1. There are 2n of the former and because they contain

the negative roots ��i, only 2n different spinors arise when

multiplying with ��3. These therefore together account for

the order of 4n. Since the first case of spinor is in bijection with

a root vector via multiplying with e1, one can continue and

map to the second case by multiplying with e3. One can

therefore map directly from one kind of spinor to the other by

multiplying with e1e3 � j. The two are therefore necessarily

orthogonal but otherwise identical.

4.2. Spinorial symmetries

The Clifford algebraic approach via spinor groups has the

decided advantage that it is clear firstly why the root system is

given by a binary polyhedral group and, secondly, why this

group reappears in the automorphism group. There are three

common group actions (whereby the group acts on itself): left

action (action by group multiplication from the left) gh, right

action hg and conjugation g�1hg. By virtue of being a spinor

group, the set of vertex vectors is firstly closed under reflec-

tions and thus a root system because of the group closure

property, and secondly invariant under both left and right

multiplication separately.

Theorem 4.2 (spinorial symmetries). A root system induced

via the Clifford spinor construction has an automorphism

group that contains two factors of the respective spinor group

acting from the left and the right.

In our opinion, the construction from three dimensions is

the only compelling explanation for a number of features that

we will explain for the example of H4:

(a) That the root system H4 can be constructed in terms of

quaternions (Theorem 2.7 and Proposition 2.8).

(b) That reflections are given by quaternion multiplication

(Lemma 2.10).

(c) That as a discrete quaternion group the root system is

isomorphic to a discrete subgroup of Spinð3Þ � SUð2Þ, the

binary icosahedral group (Theorem 2.6).

(d) That the group H4 can essentially be generated from two

(rather than four) simple quaternionic roots (they are essen-

tially the spinors �1�2 and �2�3 in terms of the simple roots of

H3; Dechant, 2013b).

(e) That the sub root system H3 is given by the pure

quaternions [this is essentially just Hodge duality with the

pseudoscalar/inversion I, mapping root vectors to pure

quaternions. For instance, this is not true for A3, which does

not contain I (Dechant, 2013b)].

(f) That the automorphism group of H4 consists of two

copies of the binary icosahedral group 2I (Theorem 4.2):

AutðH4Þ ¼ 2I � 2I and is of order ð120Þ2.

(g) That H4 is an exceptional phenomenon (accidentalness

of the construction).

Similarly, the automorphism group of F4 is given by the

product of two binary octahedral groups AutðF4Þ ¼ 2O� 2O

of order ð48Þ2. The automorphism group of D4 contains two

factors of the binary tetrahedral group 2T of order ð24Þ2, as

well as an order-2 Z2-factor, which is essentially whether the

basis vectors e1, e2, e3 are cyclic or anticyclic (i.e. a Dynkin

diagram symmetry of A3). In particular, D4 does not contain

A3 as a pure quaternion subgroup, since A3 does not contain

the inversion, and the central node in the D4 diagram is

essentially spinorial (i.e. not a pure bivector/quaternion). The

automorphism groups of I2ðnÞ � I2ðnÞ are two factors of the

dicyclic groups of order ð4nÞ
2. The automorphism group of A4

1
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contains two copies of the quaternion group Q as well as a

factor of S3 for the permutations of the basis vectors e1, e2, e3

(from the Dynkin diagram symmetries of A3
1), giving order

3!82. A summary of the symmetries in this and the next

subsections is displayed in Table 5.

We therefore contend that the Clifford algebraic approach

in terms of spinors is a new geometric picture which derives

the known results (and more) uniformly and much more

efficiently than the standard approach. In particular, spinor

techniques extend to arbitrary dimensions – the isomorphism

with H is accidental in three dimensions and the quaternionic

description does therefore not extend to higher dimensions.

The spinorial nature of the respective four-dimensional root

systems thus demystifies the peculiar symmetries of the four-

dimensional Platonic solid analogues 16-cell, 24-cell (and

dual) and 600-cell and their duals as essentially the rotational

symmetries of the conventional three-dimensional Platonic

solids. In the next two subsections, we consider another group

action, having dealt with left and right actions in this section,

and we shall see that the spinorial symmetries also leave

imprints on other four-dimensional (semi-regular) polytopes.

4.3. Conjugal spinor groups

The spinor groups we have been considering so far formed

groups where the multiplication law was given by the

geometric product. However, as we have seen, these groups

are also closed when one takes the operation R2 ! R02
¼ �R1

~RR2R1=ðR1
~RR1Þ from Lemma 2.10 as the group multi-

plication. This of course simply amounts to closure under

reflections in four dimensions and thus the root system

property.

If one considers the spinor groups derived from reflections

in A3/B3/H3 (i.e. essentially 2T/2O/2I which ultimately gives

rise to D4/F4/H4) as given earlier in Theorem 3.2, but now

instead takes as the group multiplication law the one given by

Lemma 2.10, one finds several subgroups, which of course

correspond to the sub root systems that one would expect such

as An
1, A3, B3, H3, A2, H2, A2 � A1, A2 � A1 � A1 etc. and their

closure property. However, one also finds in addition A2 � A2

or H2 �H2 in the case of H4, or B4 in F4.

Since the double-sided multiplication law is remotely

reminiscent of group conjugation (with a twist), as opposed to

left and right action which gave rise to the automorphism

groups, we will call these subgroups ‘conjugal’. It is interesting

that it is possible to recast the problem of finding a sub root

system to the group theoretic problem of finding subgroups.

4.4. The grand antiprism and the snub 24-cell

Since the H4 root system 600-cell contains H2 �H2, it is

obvious that H2 �H2 even when thought of as a subset of H4

is invariant under its own Coxeter group, so that it lies on its

own orbit. The 600-cell has 120 vertices given by the binary

icosahedral group 2I, and one finds that subtracting the 20

vertices of H2 �H2, the remaining 100 vertices are on another

orbit of H2 �H2, and give a semi-regular polytope called the

grand antiprism. It was only constructed in 1965 by Conway

and Guy by means of a computer calculation (Conway & Guy,

1967). In particular it is interesting that the symmetry group

of the grand antiprism is by our construction given by

AutðH2 �H2Þ (Koca et al., 2009), which as we have just seen is

of order 400 ¼ 202. This route to the grand antiprism is

considerably more economical than the traditional approach.

It is interesting as a non-Platonic example of a spinorial

symmetry and also from the doubling perspective: H3 has a

subgraph H2 � A1 (by ignoring the unlabelled link in H3), so

one might think of the H2 �H2 inside H4 as induced via the

doubling procedure from the H2 � A1 inside the H3. Likewise,

H4 also has another (maximal) subgroup AutðA2 � A2Þ that

can similarly be seen to arise from the A2 � A1 inside the H3

by deleting the other link (the one labelled by 5) in the

H3 diagram, and has order 144 ¼ 122. These are intriguing

imprints of spinorial geometry on the symmetries of the grand

antiprism.

The snub 24-cell has similar symmetries. The binary tetra-

hedral group 2T is a subgroup of the binary icosahedral group

2I. Therefore, subtracting the 24 vertices of the 24-cell from

the 120 vertices of the 600-cell, one gets a semi-regular poly-

tope with 96 vertices called the snub 24-cell. Since the 24

subtracted points from the D4 root system form a single orbit

under 2T, the remaining 96 points are likewise separately left

invariant under 2T. The symmetry group of both sets is

therefore given by 2T � 2T, and the order is thus 576 ¼ 242,

explaining the symmetry of the snub 24-cell in spinorial terms.

These two cases of four-dimensional polytopes are there-

fore examples of semi-regular polytopes exhibiting spinorial

symmetries, much like the ‘four-dimensional Platonic solids’.

5. The four-dimensional menagerie

We have shown that some Coxeter groups of rank 4 are

induced via the Clifford spinor construction, and we have seen

that others are subgroups or conjugal subgroups of these.

There is only a limited number of rank-4 root systems.

Therefore in this section we consider all rank-4 root systems in

the context of spinor induction.
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Table 5
Summary of the non-trivial symmetries of four-dimensional root systems
that can be interpreted as induced from a three-dimensional spinorial
point of view: the 24-cell and snub 24-cell; Autð�F4

Þ; 120-cell and 600-cell;
16-cell; AutðA2 � A2Þ; the grand antiprism and AutðH2 �H2Þ.

More generally, Aut½I2ðnÞ � I2ðnÞ
 is of order 4n� 4n.

Rank 3 j�j jAutð�Þj Rank 4 j�j jAutð�Þj

A3 12 24 D4 24 2� 242 ¼ 1152

B3 18 48 F4 48 482 ¼ 2304

H3 30 120 H4 120 1202 ¼ 14400

A3
1 6 8 A4

1 8 3!� 82 ¼ 384

A1 � A2 8 12 A2 � A2 12 122 ¼ 144

A1 �H2 12 20 H2 �H2 20 202 ¼ 400

A1 � I2ðnÞ 2nþ 2 4n I2ðnÞ � I2ðnÞ 4n ð4nÞ2



Table 6 summarizes the results for the menagerie of four-

dimensional root systems. The first column in the table

denotes the decomposition of the rank in terms of the rank

of the irreducible components. In particular, all irreducible

rank-4 Coxeter groups are either spinor induced (denoted by

‘yes’) or (conjugal) subgroups of those that are (denoted by

�). Likewise all Coxeter groups that are the product of a rank-

3 group with A1 can be obtained as (conjugal) subgroups of

the irreducible ones. For the 2þ 2 decomposition we

encounter the case I2ðnÞ � I2ðnÞ that we found was induced

from I2ðnÞ � A1. However, the general case I2ðnÞ � I2ðmÞ is

the first case that cannot in general be spinorially induced

(denoted by ‘no’). Likewise, I2ðnÞ � A1 � A1 is neither spinor

induced, nor a subgroup of the larger Coxeter groups for

general n. However, the special case of A4
1 was our first

example of spinor induction.

In general, one would not expect most, and certainly not all,

such rank-4 Coxeter groups to be spinor induced, as the series

An, Bn and Dn exist in any dimension and one can form sums

from smaller irreducible components. However, it is striking

how many of them are inducible via spinors, in particular all

those associated with exceptional phenomena in four dimen-

sions. At this point, we therefore go back to our considerations

of exceptional phenomena, trinities and the McKay corre-

spondence.

6. Arnold’s trinities and the McKay correspondence

In this section, we discuss a wider framework with multiple

connections amongst trinities and different interpretations for

them. However, we have also seen that the Clifford spinor

construction is more general, and perhaps more akin to the

McKay correspondence, than a trinity. We therefore begin by

introducing the McKay correspondence.

The trinities ð2T; 2O; 2IÞ and ðE6;E7;E8Þ of the binary

polyhedral groups and the E-type Lie groups are connected

via the McKay correspondence in the following sense. The

binary polyhedral groups are discrete subgroups of SUð2Þ and

therefore each have a two-dimensional irreducible spinor

representation 2s. We can define a graph by assigning a node

to each irreducible representation of the binary polyhedral

groups with the following rule for connecting edges: each node

corresponding to a certain irreducible representation is

connected to the nodes corresponding to those irreducible

representations that are contained in its tensor product with

2s. For instance, tensoring the trivial representation 1 with 2s

trivially gives 2s and thus the only link 1 has is with 2s;

2s � 2s ¼ 1þ 3, such that 2s is connected to 1 and 3 etc. On

the Lie group side one considers the affine extension of

ðE6;E7;E8Þ achieved by extending the graph of the Dynkin

diagram by an extra node. The McKay correspondence is the

observation that the graphs derived in both ways are the same,

as shown in Fig. 1. In particular the affine node on the Lie

group side corresponds to the trivial representation of the

binary polyhedral groups. There are other mysterious

connections, for instance the coefficients of the highest/affine

root of the affine Lie group in terms of the roots of the

unextended Lie group are given by the dimensionalities of the

irreducible representations of the corresponding binary group.

However, the McKay correspondence is more general than

this relation between trinities, for it holds for all finite

subgroups of SUð2Þ, in particular the ones that have the two-

dimensional discrete subgroups of SOð3Þ as pre-images under

the universal covering map. This way the infinite families of

the cyclic groups and the dicyclic groups correspond to the

infinite families of affine Lie groups of A and D type. The

McKay correspondence is therefore more a result on the ADE

classification than a mere trinity. In the sense that our Clifford

spinor construction also applies to the infinite family of two-

dimensional groups I2ðnÞ, it feels closer in spirit to the McKay

correspondence.

In fact there is now an intricate web of connections between

trinities, some well known and several we believe to be new,

as well as trinities appearing in different guises in multiple

interpretations, as shown in Fig. 2.

The Clifford spinor construction inducing ð2T; 2O; 2IÞ from

ðA3;B3;H3Þ does not seem to be known, and the ð2T; 2O; 2IÞ

then induce the root systems ðD4;F4;H4Þ. The ð2T; 2O; 2IÞ

also correspond to ðE6;E7;E8Þ via the McKay correspon-

dence. The affine Lie groups have the same Coxeter–Dynkin

diagram symmetries as ðD4;F4;H4Þ, i.e. S3 (triality) for D4 and
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Table 6
The rank-4 Coxeter groups in terms of irreducible components.

‘Yes’ denotes that the rank-4 group is induced directly via the Clifford spinor
construction.� denotes that the group is a subgroup or even has a root system
that is the sub root system (i.e. a conjugal subgroup) of a group that is spinor
induced. ‘No’ means that the root system cannot be induced spinorially.

4 A4 B4 D4 F4 H4

� � yes yes yes

3þ 1 A3 �A1 B3 � A1 H3 �A1

� � �

2þ 2 I2ðnÞ � I2ðnÞ I2ðnÞ � I2ðmÞ
yes no

2þ 1þ 1 I2ðnÞ � A1 � A1

no

1þ 1þ 1þ 1 A4
1

yes

Figure 1
McKay correspondence for E8 and 2I: Dynkin diagram for the standard
affine extension of E8, here denoted Eþ8 , and the graph for the tensor
product structure of the binary icosahedral group 2I, where nodes
correspond to irreducible representations (labelled by their dimension di,
and a subscript s denotes a spinorial representation). The affine root �0 of
Eþ8 (red) corresponds to the trivial representation of 2I and is given in
terms of the other roots as ��0 ¼

P
di�i. The sum of the dimensions of

the irreducible representations of 2I gives the Coxeter numberP
di ¼ 30 ¼ h of E8, and the sum of their squares

P
d2

i ¼ 120 gives
the order of 2I.



Eþ6 , S2 for F4 and Eþ7 , and S1 for H4 and Eþ8 (H4 and E8 also

have the same Coxeter number/element, as easily shown in

Clifford algebra), making a connection between these two

trinities.

In fact, ðA3;B3;H3Þ, ð2T; 2O; 2IÞ and ðE6;E7;E8Þ are

connected in one chain via ð12; 18; 30Þ, which we have not

encountered in the literature and which we suggest as a trinity

in its own right. ð12; 18; 30Þ are the Coxeter numbers of

ðE6;E7;E8Þ – performing all 6/7/8 fundamental reflections in

the Coxeter groups ðE6;E7;E8Þ corresponding to the simple

roots gives the so-called Coxeter elements w of the groups;

their order h (wh ¼ 1) is called the Coxeter number. However,

ð12; 18; 30Þ is also the sum of the dimensions of the irreducible

representations (
P

di) of the binary polyhedral groups. It

does not appear to be known that this is also connected all the

way to ðA3;B3;H3Þ, as ð12; 18; 30Þ is also the number of roots

in their root systems.

Similarly there is a chain linking ðA3;B3;H3Þ, ð2T; 2O; 2IÞ

and ðD4;F4;H4Þ via the trinity ð24; 48; 120Þ. It is at the same

time the number of different spinors generated by the

reflections in ðA3;B3;H3Þ, the order of the binary polyhedral

groups ð2T; 2O; 2IÞ given by the sum of the squares of the

dimensions of the irreducible representations (
P

d2
i ), the

number of roots of the four-dimensional root systems

ðD4; F4;H4Þ, as well as the square root of the order of their

automorphism group.

Without doubt, there are more connections to be found and

deeper reasons for these connections to exist, so we propose

here the Clifford algebra approach as a novel and hopefully

fruitful path to explore.

7. Conclusions

In the literature, great significance is attached to quaternionic

representations, in particular those in terms of pure quater-

nions. We have shown that this belief is misplaced, and that the

situation is much clearer and more efficiently analysed in a

geometric setup in terms of spinors. The pure quaternion sub

root systems are not in fact deeply mysterious yet significant

subsets of the rank-4 groups (something that only works if the

group contains the inversion), but the rank-4 groups are

instead induced from three-dimensional considerations alone,

and do not in fact contain more geometric content than that of

three dimensions alone. Or perhaps the mystery is resolved

and the significance explained, now that there is a simple

geometric explanation for it.

We have found novel connections between the Platonic

solids and their four-dimensional counterparts, as well as other

four-dimensional polytopes. In particular, our construction

sheds light on the existence of all the exceptional phenomena

in four dimensions such as self-duality of the 24-cell and

triality of D4, the exceptional root systems F4 (largest crys-

tallographic in four dimensions) and H4 (largest non-crystal-

lographic). The striking symmetries of these four-dimensional

polytopes had been noticed but had not really been under-

stood in any geometrically meaningful way. We have made

novel connections in pure mathematics over a broad range of

topics, and in relation to trinities and the McKay correspon-

dence. The spinorial nature of the rank-4 root systems could

also have profound consequences in high-energy physics since

these groups are pivotal in Grand Unified Theories and string

and M-theory. So perhaps after the failed attempts of Plato,

Kepler and Moon to order the elements and the universe,

planets and nuclei in terms of the Platonic solids, they might

still leave their mark on the universe in guises yet to be

discovered.
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